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Abstract. As many other software engineering activities, building metamodels is
concerned with reuse. New metamodels are seldom defined from scratch, and are
usually more or less similar to existing metamodels. While mechanisms, such as
profile and package merge, have been defined for handling extension of meta-
models, there is no such mechanism for controlling the reduction of metamodels.
As a consequence, metamodels tend to contain unnecessary modeling elements,
which leads to harmful overheads of complexity for both tool builders and users.
In this paper, we first introduce package unmerge - a new relation between pack-
ages - which is defined as a counterpart to package merge, and next show how
these two relations may be used together to fine-tune metamodel reuse.

1 Introduction

Building metamodels, as many other software engineering activities, can greatly benefit
from reuse. This was acknowledged by the OMG, as they introduced the package merge
mechanism, by which the UML language could be constructed by the fusion of existing
components. 

Indeed, new metamodels are very often more or less similar to existing metamodels,
and being able to express these similarities may greatly alleviate the process of meta-
model editing.

Profiles and package merge relations are the dominant techniques for managing ex-
tensions of metamodels. Profiles offer means for controlling how features are added to
existing modeling elements, while package merge relations provides both structuring
and merging policies for controlling the fusion of modeling elements. 

While extension has deserved significant interest, reduction has not yet gained the
same exposure. However, as pointed out in the literature [1], there are significant dif-
ferences between metamodels and their effectively used subsets. In other words, meta-
models contain too many features, one reason for that being that it is currently imprac-
ticable to identify and remove unneeded parts. Unfortunately, these undesirable features
lead to harmful overheads of complexity for both tool builders and users. 

 In this paper, we examine how extension and reduction of metamodels could be ex-
pressed in a seamless way, basically by providing operational semantics for a package
unmerge mechanism, built as a counterpart of the package merge. 
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Besides metamodeling, this works is related to several other fields, such as gram-
mars, databases, domain specific languages and ontologies; which have all addressed
this issue of merging or aligning descriptions [2, 3]. Interestingly, as for metamodels,
the issue of reduction has got much less coverage than extension.

 The paper is organized as follows: after this introduction, section 2 motivates the
need for reduction mechanisms for metamodels, section 3 presents three dominant tech-
niques for metamodel extension, section 4 presents our proposal for reduction (that we
call package unmerge relation), section 5 illustrates the use of package unmerge,
section 6 provides more in depth examples, section 7 compares our approach to others,
and section 8 concludes and presents future directions.

2 Motivation for reducing metamodels

Over the past years, as our team was involved in different projects about meta-model-
ing, we have had to face a recurring issue for reusing existing metamodels: being able
to simultaneously extend and reduce metamodels. While established mechanisms are
available for managing extensions (such as profiles and package merge relations) we
are not aware of equivalent mechanisms for reducing metamodels. This is unfortunate,
because undesirable language features lead to harmful overheads of complexity for both
tool builders and users. 

We ran again in this situation as we were developing elements of a test generator
for SysML, in the context of the VETESS project1. On one hand we had SysML models,
on the other hand we had a test generator whose input language was a subset of UML.
SysML is defined as a UML profile, which means that SysML models are UML models
(as profiles do only decorate metamodels), and so one would naively expect an UML
tool to be able to process such UML profiled model. Unfortunately, the test generator
was not using UML, but a subset of UML [4]; moreover, this subset was not explicitly
represented by a metamodel, but was merely implemented in the tool.

To determine the subset of UML used by the tool generator, we first developed a
“footprint” system, at the EMF repository level, which earmarked all the UML con-
structs that the tool was manipulating as it was processing models, until we had a stable
footprint of the tool (at least stable for all the models that we had at hand). We deter-
mined that two types of reductions would have to be applied to UML in order to specify
the subset used by the tool: coarse grained reductions (e.g. removing use case diagrams,
timing diagrams...) and fine grained reductions (e.g. generalization relations, String at-
tributes...).

While we tried to use the modularization technique of UML, looking for those
package not-to-merge, we realized that we would be able to address coarse grained re-
ductions, but not fine grained, such as removing generalization relations which are de-
fined in the same package than classes and associations. In short, even modular lan-

1. http://lifc.univ-fcomte.fr/vetess/
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guages are not necessarily as modular as required, and reducing a language by merging
only a subset of the modules is not applicable in a general fashion.

As a conclusion, an other mechanism is required to extract parts of existing mod-
ules. Preferably, because footprint detection is only a workaround, we would like to be
able to describe explicitly those parts to be reduced, using metamodels as for package
merge relations.

3 Extending metamodels

In model driven realm, models are expressed in languages themselves described by oth-
er models that play the role of so-called metamodels. Hence, a given metamodel defines
the set of all models that are said to conform to that given metamodel. As a conse-
quence, enlarging the range of possible models, implies extending the corresponding
metamodels. Typical mechanisms for controlling metamodel extension include UML
profiles, package merge relations, and aspect weaving.

Profiles [5 - section 18] became popular as UML promoted them as a lightweight
approach for language extension. Profiles define extension points (called stereotypes)
for the metaclasses of a (MOF [6]) metamodel. Stereotypes can insert additional prop-
erties or constraints to the metaclass they extend. Stereotypes work as decorations, do
not modify the decorated metamodels, and can be removed or swapped at any moment
in the lifecycle of a model. Therefore, models remain conforming to their original meta-
models (regardless of profiles).

Package merge relations [7 - section 11.9.3], as opposed to profiles, are considered
heavyweight an extension mechanism, since they impact directly the metamodel ele-
ments. Package merge relations are available both in the UML standard and in the MOF
metalanguage. Package merge relations combine the contents of two packages into a
single one, following a recursive union-like copy approach. In case of name conflicts,
conflicting elements are merged together into the same element in the resulting pack-
age. Package merge relations make the core of the modularization technique of the
UML metamodel. An illustrating example is the definition of UML compliance levels.
Compliance levels define the modeling concepts that must be supported by tools. A tool
with compliance level L1 must support class diagrams and use case diagrams, while L2
compliance level also requires to support profiles. Since UML modeling elements are
distributed across a set of packages in the UML metamodel, the L1 compliance level is
formalized by a package that is merely built by merging those packages that define the
necessary concepts for class and use case diagrams. Similarly, L2 compliance level is
also defined by a package that merges L1 package and the package that formalizes the
profile concepts (among others).

Aspect weaving was originally proposed in the context of programming [8]. Gen-
erally speaking, aspects define extension points (often called join points) where ele-
ments (often called advices) may be injected (woven in aspect-oriented terminology).
Join points are conveniently specified by pointcuts, which can target different join
points using a single pattern. More recently, aspect weaving has been used to alter mod-
els, and by extension metamodels [9]. Many different formalisms have been studied so
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far, including UML class diagrams [10]. As MOF is also based on class diagrams, MOF
metamodels may also be woven with aspect models in order to be extended.

To summarize, profiles provide a lightweight approach, that makes some metamod-
eling capabilities available at modeling time. Package merge relations focus on meta-
modeling time. Aspect weaving, is used at modeling time, but can be used at meta-mod-
eling time as well, since any metamodel is also a model.

4 Unmerging metamodels

A metamodel may be seen as a hierarchical set of information about the structure of
conforming models. For metalanguages such as MOF and Ecore, packages contain
classes that bear properties, and the hierarchy is represented by composition links be-
tween instances of the classes (actually, meta-classes). By altering those classes and re-
lations, it is possible to restrict the range of conforming models. Typical modifications
include removing class properties and strengthening constraints such as multiplicities.
Practically speaking, this means pruning metamodel just like a tree can be pruned, start-
ing at the root of the branches that represent the language constructions to be removed.

To identify those specific points, we found convenient to use the same metalan-
guage in which the to-be-reduced metamodel is expressed, thus following the example
of aspect weaving where the syntax of the “aspectized” language is reused for express-
ing advices. Pruned points in an Ecore (or MOF) to-be-reduced metamodel are identi-
fied in an Ecore (or MOF) reduction metamodel: the elements to be cut are duplicated
in the unmerge metamodel using the same name and included in a matching hierarchy.
Thus, prune points are identified as leaves of the reduction metamodel. Since the prun-
ing points are matched with elements of the to-be-reduced metamodel according to their
name, and since the metamodeling language is directly used to define a change in a
metamodel, the mechanism looks like package merge. As we aim to reduce a metamod-
el rather than extending it, we decided to name this approach package unmerge.

In order to unmerge metamodels in a deterministic way, we had to define a compo-
sition hierarchy of concepts, and matching rules. This hierarchy is defined as follows:

• the root is a package,
• a package may contain other packages and classes,
• a class may contain properties or invariant constraints,
• properties and invariant constraints do not contain other elements.

An element in the reduced metamodel will match an element in the unmerge metamodel
if they both have:

• the same name,
• the same metaclass (i.e. packages can only match packages, classes can match

only classes, etc.),
• matching owners.

Constraints can be either strengthened or relaxed. If a leaf element has a stronger
constraint, then the matching element appears in the final metamodel (i.e. is not re-
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moved) but updated with this stronger constraint. Elements that hold constraints are the
following:

• classes, that can be either concrete or abstract; an abstract class being more con-
strained than a concrete class,

• properties, that may define multiplicities; a property with a smaller multiplicity
range is considered more constrained than a property with a larger multiplicity
range.

Invariant constraints deserve special attention as they may be either explicitly or
implicitly dropped. Indeed, since some elements are removed in the metamodel result-
ing from the unmerge, remaining invariant constraints (i.e. invariant constraints that did
no match invariant constraints explicitly specified in the unmerge metamodel) are all
typed-checked, and dropped if checking does not succeed.

Finally, the name of the metamodel resulting from the unmerge transformation is
the name of the unmerge metamodel.

 Package unmerge proceeds the following way. All the elements of the to-be-re-
duced metamodel that match leaf elements of the package unmerge metamodel are re-
cursively removed from the original metamodel. Removing a class C also removes the
properties whose type is C. Moreover, if a C class inherits from a B class to be removed,
and if B inherits from classes A1 and A2 to be kept, then C class in the reduced meta-
model will inherit from classes A1 and A2 directly. Leaf elements from the unmerge
metamodel that do not match any element in the metamodel to be unmerged are ignored.
As such, if unmerging a metamodel L with an unmerge metamodel U will produce a
metamodel L--, unmerging L-- again with the U metamodel will result in the L-- meta-
model: the unmerge transformation is idempotent.

 The algorithm for unmerging a metamodel is defined as follows. For sake of space
and readability, opposite properties and re-affectation of properties type is not discussed
in this paper.

Algorithm to find a matching element
match(MM, e): elt

elt ← ∅
MM.elements.each{ ue | 

e.name = ue.name
&& e.metaType = ue.metaType 
&& match(MM, e.owner) = ue.owner ⇒ elt ← ue} 

Algorithm to unmerge a metamodel MM with an unmerge metamodel MMu
packageUnmerge(MM,MMu) : MMt,MMm

1. Copies source meta-model MM into target metamodel MMt and its merge MMm
MMt ← MM, MMm ← MM, Ereq ← {}, Emerge ← {}
2. Checking types
MMt.types.each{ t |

2.1 Types are kept in MMm and removed from MMt, except if...
match(MMu, t) ≠ ∅ ⇒ Emerge ← Emerge ∪ {match(MMm, t)}
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2.1.a it is abstract in MMu while not in MM
if !t.isAbstract && match(MMu,t).isAbstract then

Ereq ← Ereq ∪ {t}, t.abstract = true
2.1.b it removes not all properties / not all constraints
elsif match(MMu,t).eStructuralFeatures ≠ ∅

|| match(MMu,t).constraints ≠ ∅ then
Ereq ← Ereq ∪ {t} 

2.1.c If a class is removed, its sub-classes
else 

- are kept in merge
Emerge ← Emerge ∪ t.subClasses.each{ mme |

 match(MMm,mme)}
- inherit from its super-class
t.subClasses.each{ s | s.superClasses ←

(s.superClasses / {t}) ∪ t.superClasses}
end if
2.2 Types that are not in unmerge are kept only in target meta-model
match(MMu, t) = ∅ ⇒ Ereq ← Ereq ∪ {t} }

3. Checking properties and constraints
(MMt.types.structuralFeatures ∪ MMt.types.constraints).each{ p | 

3.1 Properties and constraints from MMu are kept in MMm and removed from MMt, 
except if...

match(MMu, p) ≠ ∅ ⇒ Emerge ← Emerge ∪ {match(MMm,p), match(MMm, p.owner)}
3.1.a the element is a property with a different multiplicity 
p ∈ p.owner.structuralFeatures

&& ( p.lower ≠ match(MMu, p).lower
|| p.upper ≠ match(MMu, p).upper))⇒ (Ereq ← Ereq ∪ {p}, Ereq ← Ereq ∪ {p.owner},
p.lower ← max(p.lower, match(MMu, p).lower),
p.upper ← min(p.upper, match(MMu, p).upper))

3.2 Types that are not in unmerge are kept only in target meta-model 
match(MMu, p)= ∅ ⇒ Ereq ← Ereq ∪ {p} } 

4. sub-packages
MMt.subPackages.each{ sp | 

4.1 Packages in unmerge are kept in merge and removed from target metamodel, 
except if...

match(MMu, sp) ≠ ∅ ⇒ Emerge ← Emerge ∪ {match(MMm, sp)} 
4.1.a it removes not all contents
match(MMu, sp).types ≠ ∅⇒ ((spu, spm) ← packageUnmerge(sp, match(MMu, sp)),

Ereq ← Ereq ∪ {spu}, Emerge ← Emerge ∪ {spm},
MMt ← (MMt / {sp}) ∪ spu, MMm ← MMm ∪ {spm})

4.2 Packages that are not in unmerge are kept only in target meta-model
match(MMu, sp) = ∅ ⇒ Ereq ← Ereq ∪ {sp} }

5.Remove non-required elements in target meta-model
(elements include sub-packages, types, and constraints) 
MMt.elements.each{ e | e ∉ Ereq ⇒ MMt.elements ← MMt.elements / {e}} 
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6.Checking constraints
MMt.elements.each{ e | e.constraints.each{ c | !c.compile()⇒ (e.constraints ← e.constraints / {c},

Emerge ← Emerge ∪ {match(MMm, e)})} 
7.Remove non-required elements in merge meta-model
MMm.elements.each{ e | e ∉ Emerge ⇒ MMm.elements ← MMm.elements / {e}}

As shown in Figure 1, the outcome of an unmerge is the reduced version of the orig-
inal metamodel (L--). While the unmerging transformation removes some elements
from a metamodel, the dual package merge transformation adds elements to a meta-
model. Interestingly, package merge and unmerge transformations can also generate the
counterparts which may be used later to undo the effect of either merge or unmerge.
Hence, in addition to the resulting metamodel, the transformation may reference all
those concepts that were removed from the metamodel to be unmerged (L) in an exten-
sion taking the shape of a package merge (M).

To go back to the unmerged metamodel (L), one just needs to perform a package
merge transformation on the unmerged version (L--) driven by the previously generated
merge (M). Thus, the generated merge (M) plays the role of the trace of the unmerge
transformation: it makes it possible to control what happened during the unmerge, and
to reverse the unmerge process.

Symmetrically, the package merge transformation can be extended to generate the
unmerge counterpart, so that any addition to the merged metamodel (L--) is referenced
in a generated unmerge counterpart (U). As such, the package unmerge transformation
is the inverse transformation of the package merge transformation.

5 Unmerge use cases

This section presents in Table 1 a set of simple examples which illustrate the main as-
pects of the package unmerge relation. As explained in the previous section, since any
reduction defined in package unmerge has its package merge counterpart, we also show
the counterparts to be merged in order to go back to the original metamodel.
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Fig. 1. Reversibility of the package merge and package unmerge transformations.
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Table 1. Unmerge use cases

Unmerge use cases Results and merge counterparts

Unmerging package P

Removing package P

Removing class C

Removing class P::C

Removing attribute C.p1

Removing reference C.d

Removing class C in hierarchy

Removing referenced class D
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6 Example

This section shows how the package merge and unmerge relations may be used to build
a metamodel by reusing other metamodels. The overall context is model-based testing
[11] of SysML models, and the example is borrowed from the VETESS project. The
goal is to generate a set of test cases from a behavioral model of the system under test.

The available tooling for test generation is based on a dialect of the UML language
(called UML4MBT, UML for Model Based Testing), and a model transformation may
be used to translate UML models to UML4MBT models (which is out of the scope of
this example). 

 The same scheme is implemented for SysML models. A dedicated SysML dialect
(called SysML4MBT, SysML for Model Based Testing) has been defined. A model
transformation has been written to translate SysML4MBT models to UML4MBT mod-
els, thus allowing direct reuse of the tooling for test generation. Figure 2 describes this
transformation chain.

SysML4MBT and UML4MBT are good examples of languages which are more or
less similar. They share a lot of commonalities, but diverge on some parts. To specify a

Making C class abstract

Removing an invariant constraint of C

Strengthening multiplicity for C.d

Table 1. Unmerge use cases

Unmerge use cases Results and merge counterparts
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Fig. 2. VETESS tool chain for SysML.
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model transformation between SysML4MBT and UML4MBT is it convenient to ex-
plicit how these two languages compare, and how they can be built from each other.

 Figure 3 shows how SysML4MBT can be derived from UML4MBT. Construc-
tions to be removed are represented in the package unmerge metamodel while parts to
be added are specified in the package merge metamodel.

The representation is interpreted as follows:
•  The Instances package has to be removed, including all contained elements.
• The Core::Suite metaclass has to be removed. The containing Core package

will not be removed, but references to Suite will be dropped (in our case
Core::Project.suite).

• Class is made abstract (by the unmerge) and Block is added as a concrete sub-
class (by the merge). Notice here that merging could not be used to set Class as
abstract, because the merge semantics state that merging concrete with abstract
yields concrete.

Fig. 3. Deriving SysML4MBT from UML4MBT.

UML4MBT

inv OneSC: self.stateChart->notEmpty() implies
Class.allInstances()->select(stateChart->notEmpty())->forAll(c|c=self)
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• The multiplicity of the composition relation between CompositeState and
Statechart is set to 1..* (by the merge).

• The constraint OneSC attached to Class is removed by the unmerge of a con-
straint of the same name (the body is not used for the unmerge; so we arbitrarily
set it's value to true)

 As explained earlier, package merge and package unmerge can be used either to
trace their effect each other, or to undo their effect. We will illustrate this last point in
the following lines. Figure 4 shows how to build UML4MBT from SysML4MBT, by
merging and unmerging the respective counterparts.

Again, the representation is interpreted as follows:
• The unmerge part states that Classes::Block should be removed, and that

the StateCharts::CompositeState::stateChart multiplicity
should be strengthened to 1..1.

Fig. 4. Deriving UML4MBT from SysML4MBT.
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• The merge part redefines Instances and its components, which are equivalent
to those dropped from UML4MBT, re-introduces the Core::Suite construct
(including incoming and outgoing references), makes the Classes::Class
metaclass concrete, and re-introduces the OneSC constraint. 

Package merge and package unmerge, along with the respective counterparts, can
be used to go back and forth from one metamodel to another. From this point, it be-
comes possible to automate, at least partially, the translation from SysML4MBT to
UML4MBT (and conversely from UML4MBT to SysML4MBT). If some parts of this
transformation need a lot of engineering (e.g. transforming multiple parallel state ma-
chines into one single state machine), other parts are trivial. Indeed, because of the way
SysML4MBT is produced from UML4MBT, those two metamodels expose many sim-
ilarities. In the SysML4MBT to UML4MBT transformation, those similarities take the
shape of “copy” rules: SysML4MBT::Project elements create
UML4MBT::Project elements, SysML4MBT::Model create
UML4MBT::Model, etc. Finally, any information whose structure in SysML4MBT
was kept from UML4MBT is merely copied to the resulting UML4MBT model.

 As such an automatic tool could be created to filter SysML4MBT models and
translate them into UML4MBT models for those modeling elements whose structure is
common between the two metamodels. The modeling elements in the SysML4MBT
models that could not be transformed in such a way would be clearly identified, and
would have to be treated independently by a “hand made” transformation. Such mech-
anism may be seen as a higher-order version of the >< operator found in [12].

7 Related works

As mentioned in section 2, extending metamodels was paid much less attention than re-
ducing. However, one interesting proposal was made by Sen et al. [1]. They identify
four reasons to motivate the reduction of a metamodel and thus avoid over-specifica-
tion:

• clearly state what are the input/output domains of a model transformation,
• avoid chaining transformations with inconsistent input/output domains,
• avoid generating input data models with unused concepts when testing transfor-

mations,
• avoid confusing a model designer.

They also propose an algorithm for reducing a metamodel. This algorithm requires the
set of all interesting elements in a metamodel; those elements are kept in the resulting
metamodel, including their dependencies in a transitive way. However, they do not state
how interesting constructs can be identified. Our approach rather identifies elements
that must not appear in the reduced metamodel. Indeed, identifying all interesting parts
may require an effort as important as defining a metamodel from scratch. Moreover, we
state how those “uninteresting elements” can be identified using the metalanguage in
which the metamodel-to-be-reduced is defined. Finally, thanks to the symmetry that ex-
ists between the merge and unmerge relations, we are able to create the reverse defini-
tion to highlight what the reduction actually did.
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Some aspect-oriented modeling techniques, such as MATA [10], provide means for
deleting modeling constructs in class diagram-like models. A strength of these tech-
niques is that they can designate various elements in a metamodel using a single rule.
Such multiple designation rules can easily be integrated in package unmerge (and pack-
age merge), e.g. by matching regular expressions instead of merely comparing construct
names. In our approach, we propose to clearly separate the notion of adding information
from removing information in two distinct metamodels (for merge and unmerge).
Moreover, transformation outcomes can be enforced right away in counterparts that use
the same formalism (merge and unmerge metamodels), rather than inspecting weave
traces afterwards. Another difference stems from the fact that our primary goal is to
overcome the problems encountered when merging metamodels: if the reused meta-
model is not as fine-grained as necessary, package unmerge comes into play to remove
well identified elements. 

Klein et al. [13] propose to unweave an aspect-oriented transformation of a model:
added information may be later removed. Their approach relies on the analysis of the
trace produced by a previously performed weaving. Interestingly, our approach does
not require a previously executed action: the unmerge mechanism does not depend on
a merge transformation, supposed to be performed before.

Metamodel matching [14] is another field related to our work. Metamodel matching
compares two given metamodels and outputs a mapping that can be used to specify or
generate a model alignment transformation [15]. Package merge and unmerge could be
used to represent this mapping with emphasize on commonalties and differences.

Steel et al. [12] define rules for comparing two metamodels. This way model trans-
formations may declare their input and output domains, so as to check that a given mod-
el can actually “enter” a transformation. As such, they check that a model which con-
forms to a given metamodel also conforms to another metamodel. Unfortunately, a
model conforming to a reduced metamodel may not always conform to the metamodel-
to-be reduced. This stems from the properties of the merge transformation. As pointed
in [16], a model conforming to a metamodel-to-be-merged may not conform to the
merged metamodel. As the counterpart of package merge, package unmerge may thus
not preserve model typing. A concluding remark is that extending the perimeter of a lan-
guage is not the only possibility of package merge; symmetrically, reducing the perim-
eter of a language may not be done only by package unmerge.

Package unmerge, following the example of package merge, is a metamodel manip-
ulation technique: it implicitly defines a transformation for a metamodel. Instead of
package merge or unmerge, one might rather consider using a general-purpose model
transformation language, such as QVT [17] to remove information from a metamodel.
However, our approach defines what one could call a domain-specific transformation
language: package merge and unmerge only focus in transforming metamodels for a
particular class of problem: reuse. Package merge and package unmerge contain much
less constructs than general-purpose transformation languages, and are thus easier to
learn and to use. Moreover, package merge and unmerge definitions use the same sur-
face syntax as the transformed metamodels. It was shown in [18] how this last point can
ease the creation of transformations: rules are much smaller, more readable, and no
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knowledge about the meta-metamodel (i.e. the internal structure of the transformed
metamodel) is required. Nevertheless, package merge and package unmerge may con-
veniently be implemented by model transformations written in general purpose trans-
formation languages.

8 Conclusion

This work is a contribution to the field of metamodel reuse, in the context of language
engineering. We have presented here a new mechanism for controlling metamodel re-
duction, based on the definition of counterparts to package merge relations, that we call
package unmerge.

Package merge and package unmerge can be considered a dual approach to meta-
model engineering, by which the effect of one can be traced and reversed by the other.
Used together, package merge and unmerge allow fine tuning of metamodel reuse.

We have defined the operational semantics of the package merge transformation,
and the corresponding algorithm is presented in the paper.

We have developed a tool which implements both package merge and unmerge, and
which provides assistance to determine the subset of a metamodel that a given tool ef-
fectively implements. The tool also automates the generation of package counterparts
for package merge and unmerge. This tool is open-source, and can be downloaded from
http://sourcesup.cru.fr/projects/vetess/.

Future directions include the addition of pattern matching to package unmerge, so
that reductions could be applied to several points in a metamodel, in one step. This
would come very close to aspect-weaving (or better-said, aspect-unweaving [13]), and
we would like to further investigate this point.
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